

STEP Mark Schemes 2017

Mathematics

STEP 9465/9470/9475

November 2017

Introduction

These mark schemes are published as an aid for teachers and students, and indicate the requirements of the examination. It shows the basis on which marks were awarded by the Examiners and shows the main valid approaches to each question. It is recognised that there may be other approaches; if a different approach was taken by a candidate, their solution was marked accordingly after discussion by the marking team. These adaptations are not recorded here.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

Admissions Testing will not enter into any discussion or correspondence in connection with this mark scheme.

Marking notation

NOTATION	MEANING	NOTES
M	Method mark	For correct application of a Method.
dM or m	Dependent method mark	This cannot be earned unless the
		preceding M mark has been earned.
Α	Answer mark	$M0 \Rightarrow A0$
В	Independently earned	Stand alone for "right or wrong".
	mark	
Е	B mark for an explanation	
G	B mark for a graph	
ft	Follow through	To highlight where incorrect answers
		should be marked as if they were correct.
CAO or CSO	Correct Answer/Solution	To emphasise that ft does not apply.
Sometimes	Only	
written as		
A *		
AG	Answer Given	Indicates answer is given in question.

STEP II 2017 Mark Scheme

Question 1

(i)
$$I_n = \int_0^1 \arctan x \cdot x^n \, dx$$

M1 Use of intgrn. by parts (parts correct way round)

$$= \left[\arctan x \cdot \frac{x^{n+1}}{n+1}\right]_0^1 - \int_0^1 \frac{1}{1+x^2} \cdot \frac{x^{n+1}}{n+1} dx$$

A1 Correct to here

$$= \left(\frac{\pi}{4} \cdot \frac{1}{n+1} - 0\right) - \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x^{2}} dx$$

$$\Rightarrow (n+1)I_n = \frac{\pi}{4} - \int_0^1 \frac{x^{n+1}}{1+x^2} dx$$

A1 Given Answer legitimately established 3

Setting n = 0, $I_0 = \frac{\pi}{4} - \int_0^1 \frac{x}{1+x^2} dx$ M1 Attempt to solve this using recognition/ substitution $= \frac{\pi}{4} - \left[\frac{1}{2}\ln(1+x^2)\right]$ M1 Log integral involved $= \frac{\pi}{4} - \frac{1}{2}\ln 2$ A1 CAO

(ii) $n \rightarrow n + 2$ in given result:

$$(n+3)I_{n+2} = \frac{\pi}{4} - \int_{0}^{1} \frac{x^{n+3}}{1+x^{2}} dx$$

B1 Noted or used somewhere

$$(n+3)I_{n+2} + (n+1)I_n = \frac{\pi}{2} - \int_0^1 \frac{x^{n+1}(1+x^2)}{1+x^2} dx$$
$$= \frac{\pi}{2} - \frac{1}{n+2}$$

M1 Adding and cancelling ready to integrate

Setting n = 0 and then n = 2 in this result (or equivalent involving integrals):

$$3I_2 + I_0 = \frac{\pi}{2} - \frac{1}{2}$$
 and $5I_4 + 3I_2 = \frac{\pi}{2} - \frac{1}{4}$

M1

Eliminating I_2 and using value for I_0 to find I_4 $I_4 = \frac{1}{20} (1 + \pi - 2 \ln 2)$

M1 By subtracting, or equivalent

A1 FT from their I_0 value

3

(iii) For n = 1, $5I_4 = A - \frac{1}{2} \left(-1 + \frac{1}{2} \right) = A + \frac{1}{4}$ = $\frac{1}{4} + \frac{1}{4}\pi - \frac{1}{2}\ln 2$

M1 Comparing formula with found I_4 value

and the result is true for n = 1 provided $A = \frac{1}{4}\pi - \frac{1}{2}\ln 2$

A1 FT from their I_4 value

Assuming $(4k+1)I_{4k+1} = A - \frac{1}{2}\sum_{r=1}^{2k} (-1)^r \frac{1}{r}$

M1 For a clearly stated induction hypothesis

(or a fully explained "if ... then ..." at end)

$$(4k+5)I_{4k+4} + (4k+3)I_{4k+2} = \frac{\pi}{2} - \frac{1}{4k+4}$$
 B1

$$(4k+3)I_{4k+2} + (4k+1)I_{4k} = \frac{\pi}{2} - \frac{1}{4k+2}$$
 B1

Subtracting:

$$(4k+5)I_{4k+4} = (4k+1)I_{4k} + \frac{1}{4k+2} - \frac{1}{4k+4}$$
 M1 Use of assumed result
$$= A - \frac{1}{2} \sum_{r=1}^{2k} (-1)^r \frac{1}{r} + \frac{1}{4k+2} - \frac{1}{4k+4}$$
 M1 Use of assumed result
$$= A - \frac{1}{2} \sum_{r=1}^{2k} (-1)^r \frac{1}{r} - \frac{1}{2} (-1)^{2k+1} \frac{1}{2k+1} - \frac{1}{2} (-1)^{2k+2} \frac{1}{2k+2}$$

$$= A - \frac{1}{2} \sum_{r=1}^{2(k+1)} (-1)^r \frac{1}{r}$$
 A1 A clear demonstration of how the two extra terms fit must be given

Let
$$x_n = X$$
. Then $x_{n+1} = \frac{aX - 1}{X + b}$ and $x_{n+2} = \frac{a\left(\frac{aX - 1}{X + b}\right) - 1}{\left(\frac{aX - 1}{X + b}\right) + b}$ M1 A1 Correct, unsimplified

i.e.
$$x_{n+2} = \frac{(a^2-1)X - (a+b)}{(a+b)X + (b^2-1)}$$

M1 Attempt to remove "fractions within fractions"

4

(i) If
$$x_{n+1} = x_n$$
 then $aX - 1 = X^2 + bX$ M1
 $\Rightarrow 0 = X^2 - (a - b)X + 1$ A1

If
$$x_{n+2} = x_n$$
 then

$$(a^2-1)X-(a+b)=(a+b)X^2+(b^2-1)X$$
 M1

$$\Rightarrow 0 = (a+b)\{X^2 - (a-b)X + 1\}$$

M1 A1 Factorisation

and so, for
$$x_{n+2} = x_n$$
 but $x_{n+1} \neq x_n$

we must have
$$a + b = 0$$

A1 Given Answer fully justified & clearly stated

(No marks for setting b = -a, for instance, and showing sufficiency)

For "comparing coefficients" approach (must be all 3 terms) max. 3/4

6

(ii)
$$x_{n+4} = \frac{(a^2 - 1)x_{n+2} - (a+b)}{(a+b)x_{n+2} + (b^2 - 1)}$$
$$= \frac{(a^2 - 1)\left[\frac{(a^2 - 1)X - (a+b)}{(a+b)X + (b^2 - 1)}\right] - (a+b)}{(a+b)\left[\frac{(a^2 - 1)X - (a+b)}{(a+b)X + (b^2 - 1)}\right] + (b^2 - 1)}$$

M1 Use of the two-step result from earlier

A1 Correct, unsimplified, in terms of X

If
$$x_{n+4} = x_n$$
 then $(a^2 - 1)^2 X - (a + b) (a^2 - 1) - (a + b)^2 X - (a + b) (b^2 - 1)$ A1 LHS correct $= (a + b) (a^2 - 1)X^2 - (a + b)^2 X + (a + b) (b^2 - 1)X^2 + (b^2 - 1)^2 X$ A1 RHS correct $\Rightarrow 0 = (a + b) (a^2 + b^2 - 2)X^2 - [(a^2 - 1)^2 - (b^2 - 1)^2]X + (a + b) (a^2 + b^2 - 2)$

$$\Rightarrow 0 = (a+b)(a^2+b^2-2)\{X^2-(a-b)X+1\}$$

M1 Good attempt to simplify

M1 Factorisation attempt

A1 A1 Partial; complete

and the sequence has period 4 if and only if

$$a^2 + b^2 = 2$$
, $a + b \ne 0$, $X^2 - (a - b)X + 1 \ne 0$

B1 CAO Correct final statement

[Ignore any discussion or confusion regarding issues of necessity and sufficiency]

NB Some candidates may use the one-step result repeatedly and get to x_{n+4} via x_{n+3} :

$$x_{n+3} = \frac{(a^3 - 2a - b)X - (a^2 + ab + b^2 - 1)}{(a^2 + ab + b^2 - 1)X - (a + 2b + b^3)} \text{ and } x_{n+4} = \frac{ax_{n+3} - 1}{x_{n+3} + b} \text{ starts the process; then as above.}$$

ALT. Consider the two-step sequence $\{\ldots, x_n, x_{n+2}, x_{n+4}, \ldots\}$ given by (assuming $a + b \neq 0$)

$$x_{n+2} = \frac{\left(\frac{a^2 - 1}{a + b}\right)X - 1}{X + \left(\frac{b^2 - 1}{a + b}\right)} = \frac{AX - 1}{X + B}, \text{ which is clearly of exactly the same form as before.}$$

Then $x_{n+4} = x_n$ if and only if $a + b \ne 0$, $X^2 - (a - b)X + 1 \ne 0$ (from $x_{n+4} \ne x_{n+2}$ and $x_{n+4} \ne x_n$ as before), together with the condition A + B = 0 (also from previous work);

i.e.
$$\frac{a^2-1}{a+b} + \frac{b^2-1}{a+b} = 0$$
, which is equivalent to $a^2+b^2-2=0$ since $a+b \ne 0$.

Note that it is not necessary to consider $x_{n+4} \neq x_{n+3}$ since if $x_{n+4} = x_{n+3} = X$ then the sequence would be constant.

(i)
$$\sin y = \sin x \implies y = n\pi + (-1)^n x$$

$$n = -1$$
: $y = -\pi - x$

B1

$$n = 0$$
:

$$v = x$$

B1

$$n = 1$$

$$n = 1$$
: $y = \pi - x$

B1 Withhold final B mark for any number of extra eqns.

 $\sin y = \frac{1}{2}\sin x \implies \cos y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\cos x$ (ii)

M1 Implicit diffn. attempt (or equivalent)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos x}{2\cos y}$$

$$= \frac{\cos x}{2\sqrt{1 - \frac{1}{4}\sin^2 x}} \quad \text{or} \quad \frac{\cos x}{\sqrt{4 - \sin^2 x}}$$

A1 Correct and in terms of x only

Ignore "endpoint" issues

 $\frac{d^2 y}{dx^2} = \frac{\left(4 - \sin^2 x\right)^{\frac{1}{2}} - \sin x - \cos x \cdot \frac{1}{2} \left(4 - \sin^2 x\right)^{-\frac{1}{2}} - 2\sin x \cos x}{4 - \sin^2 x}$

M1 For use of the *Quotient Rule* (or equivalent)

M1 For use of the *Chain Rule* for d/dx(denominator)

A1

$$= \frac{-\sin x (4 - \sin^2 x) + \cos^2 x \cdot \sin x}{(4 - \sin^2 x)^{\frac{3}{2}}}$$
$$= \frac{\sin x (\cos^2 x - 4 + \sin^2 x)}{(4 - \sin^2 x)^{\frac{3}{2}}}$$

M1 Method for getting correct denominator

$$= \frac{\sin x \left\{\cos^2 x - 4 + \sin^2 x\right\}}{\left(4 - \sin^2 x\right)^{\frac{3}{2}}}$$
$$= \frac{-3\sin x}{\left(4 - \sin^2 x\right)^{\frac{3}{2}}}$$

A1 Given Answer correctly obtained from $c^2 + s^2 = 1$

5

6

Initially, $\frac{dy}{dx} = \frac{1}{2}$ at (0, 0) increasing to a maximum at $(\frac{\pi}{2}, \frac{\pi}{6})$ since $\frac{d^2y}{dx^2} < 0$

- **B1** (Gradient and coordinate details unimportant unless graphs look silly as a result)
- **B1** Reflection symmetry in $x = \frac{\pi}{2}$
- ${\bf B1}$ Rotational symmetry about O
- **B1** Reflection symmetry in $y = \pm \frac{\pi}{2}$

4

(iii)

- **B1** RHS correct
- **B1** LHS correct

(i) Setting f(x) = 1 in (*) gives

$$\left(\int_{a}^{b} g(x) dx\right)^{2} \leq \left(\int_{a}^{b} 1 dx\right) \left(\int_{a}^{b} [g(x)]^{2} dx\right)$$

B1 Clearly stated

Let
$$g(x) = e^x : \left(\int_a^b e^x dx\right)^2 \le (b - a) \left(\int_a^b e^{2x} dx\right)$$

M1

$$\Rightarrow \left(e^b - e^a \right)^2 \le (b - a) \cdot \frac{1}{2} \left(e^{2b} - e^{2a} \right)$$

$$\Rightarrow (e^b - e^a)^2 \le (b - a) \cdot \frac{1}{2} (e^b - e^a) (e^b + e^a)$$

A1

$$\Rightarrow$$
 $e^b - e^a \le \frac{1}{2}(b-a)(e^b + e^a)$
Choosing $a = 0$ and $b = t$ gives

M1

$$e^{t} - 1 \le \frac{1}{2}t\left(e^{t} + 1\right) \implies \frac{e^{t} - 1}{e^{t} + 1} \le \frac{1}{2}t$$

A1 Given Answer legitimately obtained

(ii) Setting f(x) = x, a = 0 and b = 1 in (*) gives

$$\left(\int_{0}^{1} x g(x) dx\right)^{2} \leq \left(\int_{0}^{1} x^{2} dx\right) \left(\int_{0}^{1} [g(x)]^{2} dx\right)$$

B1 Clearly stated

Choosing $g(x) = e^{-\frac{1}{4}x^2}$ gives

M1

$$\left(\int_{0}^{1} x e^{-\frac{1}{4}x^{2}} dx\right)^{2} \le \frac{1}{3} \left(1^{3} - 0^{3}\right) \left(\int_{0}^{1} e^{-\frac{1}{2}x^{2}} dx\right)$$

$$\left(\left[-2e^{-\frac{1}{4}x^2} \right]_0^1 \right)^2 \le \frac{1}{3} \left(\int_0^1 e^{-\frac{1}{2}x^2} dx \right)$$

A1 A1 LHS, RHS correct

$$\Rightarrow \int_{0}^{1} e^{-\frac{1}{2}x^{2}} dx \ge 3 \left(-2 \left[-e^{-\frac{1}{4}} + 1 \right] \right)^{2}$$

i.e. $\int_{0}^{1} e^{-\frac{1}{2}x^{2}} dx \ge 12 \left(1 - e^{-\frac{1}{4}}\right)^{2}$

A1 Given Answer legitimately obtained 5

(iii) With f(x) = 1, $g(x) = \sqrt{\sin x}$, a = 0, $b = \frac{1}{2}\pi$,

M1 Correct choice for f, g (or v.v.)

M1 Any sensible f, g used in (*)

(*) becomes

 $\left(\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} \, \mathrm{d}x\right)^{2} \le \frac{1}{2}\pi \left(\int_{0}^{\frac{1}{2}\pi} \sin x \, \mathrm{d}x\right)$

RHS is
$$\frac{1}{2}\pi \left[-\cos x \right]_{0}^{1} = \frac{1}{2}\pi$$

A1

(and since LHS is positive) we have
$$\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} \, dx \le \sqrt{\frac{\pi}{2}}$$

A1 RH half of **Given** inequality obtained from fully correct working

With
$$f(x) = \cos x$$
, $g(x) = \sqrt[4]{\sin x}$, $a = 0$, $b = \frac{1}{2}\pi$, M1 Correct choice for f, g (or v.v.) (*) gives

$$\left(\int_{0}^{\frac{1}{2}\pi} \cos x \cdot (\sin x)^{\frac{1}{4}} dx\right)^{2} \leq \left(\int_{0}^{\frac{1}{2}\pi} \cos^{2} x dx\right) \left(\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} dx\right) \mathbf{A1}$$

LHS =
$$\left[\left[\frac{4}{5} (\sin x)^{\frac{5}{4}} \right]_{0}^{\frac{1}{2} \pi} \right]^{2} = \frac{16}{25}$$
 M1 A1 By recognition/substitution integration

and
$$\int_{0}^{\frac{1}{2}\pi} \cos^{2} x \, dx = \int_{0}^{\frac{1}{2}\pi} \left(\frac{1}{2} + \frac{1}{2}\cos 2x\right) dx$$

$$= \left(\left[\frac{1}{2}x - \frac{1}{4}\sin 2x\right]^{\frac{1}{2}\pi}\right)^{2} = \frac{1}{4}\pi$$

Giving the required LH half of the **Given** inequality:

$$\frac{16}{25} \le \frac{1}{4} \pi \left(\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} \, dx \right) \text{ i.e. } \int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} \, dx \ge \frac{64}{25\pi}$$

A1

Withhold the last A mark if final result is not arrived at

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{2a}{2at} = \frac{1}{t}$$

 \Rightarrow Grad. nml. at P is -p

 \Rightarrow Eqn. nml. to C at P is $x - 2ap = -p(x - ap^2)$

Nml. meets C again when $x = an^2$, y = 2an

$$\Rightarrow 2an = -pan^2 + ap(2 + p^2)$$

$$\Rightarrow 0 = pn^2 + 2n - p(2 + p^2)$$

$$\Rightarrow$$
 0 = $(n-p)(pn+[2+p^2])$

Since n = p at P, it follows that $n = -\frac{2 + p^2}{p}$ at N

i.e.
$$n = -\left(p + \frac{2}{p}\right)$$

M1 Solving attempt

M1 Substd. into nml. eqn.

A1

M1

A1 Given Answer legitimately obtained

A1 Given Answer legitimately obtained 2

M1 Finding gradt. of tgt. (or by implicit diffn.)

B1 FT any form, e.g. $y = -px + ap(2 + p^2)$

(ii) Distance $P(ap^2, 2ap)$ to $N(an^2, 2an)$ is given by $PN^2 = \left[a(p^2 - n^2)\right]^2 + \left[2a(p - n)\right]^2$ $= a^2(p - n)^2 \left\{(p + n)^2 + 4\right\}$ $= a^2 \left(2p + \frac{2}{p}\right)^2 \left\{\left(\frac{-2}{p}\right)^2 + 4\right\}$ $= 16a^2 \left(\frac{p^2 + 1}{p}\right)^2 \left\{\frac{1 + p^2}{p}\right\} = 16a^2 \frac{(p^2 + 1)^3}{p^4}$

M1 Substituting for *n*

 $\frac{d(PN^2)}{dp} = 16a^2 \frac{d(p^2 + 3 + 3p^{-2} + p^{-4})}{dp}$

$$= 16a^{2}(2p - 6p^{-3} - 4p^{-5})$$

$$= 32a^{2} \frac{p^{6} - 3p^{2} - 2}{p^{5}}$$

$$= \frac{32a^{2}}{p^{5}}(p^{2} + 1)^{2}[p^{2} - 2]$$

M1 Differentiation directly,

or by the Quotient Rule

A1 Correct, unsimplified

Note that $\frac{d(PN^2)}{dp} = 16a^2 \left\{ \frac{p^4 \cdot 3(p^2 + 1)^2 \cdot 2p - (p^2 + 1)^3 \cdot 4p^3}{p^8} \right\}$ $= \frac{32a^2}{p^8} \cdot p^3 (p^2 + 1)^2 \left[3p^2 - 2(p^2 + 1) \right] \text{ by the Quotient Rule}$

 $\frac{d(PN^2)}{dp} = 0 \text{ only when } p^2 = 2$

A1 Given Answer fully shown

Justification that it is a minimum

E1

(either by examining the sign of $\frac{d(PN^2)}{dp}$

or by explaining that PN^2 cannot be maximised

(iii) Grad.
$$PQ$$
 is $\frac{2}{p+q}$

Grad.
$$NQ$$
 is $\frac{2}{n+q}$ or $\frac{2}{q-p-\frac{2}{p}}$

Since $\angle PQN = 90^{\circ}$ (by " \angle in a semi-circle"; i.e. *Thales Theorem*)

$$\frac{2}{p+q} \times \frac{2}{q-p-\frac{2}{p}} = -1$$
 M1

$$\Rightarrow 4 = (p+q)\left(p-q+\frac{2}{p}\right) = p^2-q^2+2+\frac{2q}{p}$$

$$\Rightarrow 2 = p^2 - q^2 + \frac{2q}{p}$$

M1 Substituted into given expression

A1 Given Answer legitimately obtained 4

PN minimised when
$$p^2 = 2 \implies q^2 = \frac{2q}{p}$$

$$\Rightarrow q = 0 \text{ or } q = \frac{2}{p} = \pm \sqrt{2}$$

But
$$q = \pm \sqrt{2} \implies q = p$$
 (which is not the case)

E1 Other cases must be ruled out

Special Case: 1/3 for substg.
$$q = 0$$
 and verifying that $p^2 = 2$

(i)		
When $n = 1$		Clear verification.
$S_1 = 1 \le 2\sqrt{1} - 1$	B1	
Assume that the statement is true when $n = k$:	B1	Must be clear that this is
S _k $\leq 2\sqrt{k} - 1$		assumed.
Then		Linking S_{k+1} and S_k
_	M1	
$S_{k+1} = S_k + \frac{1}{\sqrt{k+1}}$		
$\leq 2\sqrt{k} - 1 + \frac{1}{\sqrt{k+1}}$	M1	Using assumed result
Sufficient to prove:	M1	
$2\sqrt{k} - 1 + \frac{1}{\sqrt{k+1}} \le 2\sqrt{k+1} - 1$		
i.e. $2\sqrt{k(k+1)} + 1 \le 2(k+1)$	A1	Multiplying by $\sqrt{k+1}$ or putting over a common
		denominator
i.e. $2\sqrt{k(k+1)} \le 2k+1$ i.e. $4k^2 + 4k \le 4k^2 + 4k + 1$		
	A1	
Which is clearly true. Therefore by induction the statement is true for all $n \ge 1$.	B1	Clear conclusion showing logic of induction.
-	[8]	
(ii)		
Required to prove:		Squaring given inequality
$(4k+1)^2(k+1) > (4k+3)^2k$ i.e. $16k^3 + 24k^2 + 9k + 1 > 16k^3 + 24k^2 + 9k$	M2	
	A1	
which is clearly true.	[2]	
When $n = 1$:	[3] M1	
$S_1 = 1 \ge 2 + \frac{1}{2} - c$	1417	
	A1	
So we need $c \ge \frac{3}{2}$ Prove $c = \frac{3}{2}$ works using induction	M1	
Assume holds when $n = k$:	M1	Allow a general c.
$S_k \ge 2\sqrt{k} + \frac{1}{2\sqrt{k}} - \frac{3}{2}$		
Then	M1	
$S_{k+1} = S_k + \frac{1}{\sqrt{k+1}} \ge 2\sqrt{k} + \frac{1}{2\sqrt{k}} + \frac{1}{\sqrt{k+1}} - c$		
Sufficient to prove:	A1	
$2\sqrt{k} + \frac{1}{2\sqrt{k}} + \frac{1}{\sqrt{k+1}} - c \ge 2\sqrt{k+1} + \frac{1}{2\sqrt{k+1}} - c$ i.e. $4k\sqrt{k+1} + \sqrt{k+1} + 2\sqrt{k} \ge 4\sqrt{k}(k+1) + \sqrt{k}$		
i.e. $4k\sqrt{k+1} + \sqrt{k+1} + 2\sqrt{k} \ge 4\sqrt{k}(k+1) + \sqrt{k}$	A1A1	
Which simplifies to the previously proved inequality.	B1	
No further restrictions on c, so the minimum value is $c = \frac{3}{2}$		
	[9]	

(i) For $0 \le x \le 1$, x is positive and $\ln x$ is negative

so
$$0 > x \ln x > \ln x$$

$$\Rightarrow$$
 $e^0 > e^{x \ln x} > e^{\ln x}$ or $\ln 1 > \ln x^x > \ln x$

$$\Rightarrow$$
 (1 >) f(x) > x since ln is a strictly increasing fn. **B1**

Again, since $\ln x < 0$, it follows that

$$\ln x < f(x) \ln x < x \ln x$$

$$\Rightarrow \ln x < \ln\{g(x)\} < \ln\{f(x)\}$$

$$\Rightarrow x < g(x) < f(x)$$

For x > 1, $\ln x > 0$ and so x < f(x) < g(x)

- M1 Suitably coherent justification
- A1 Given Answer legitimately obtained

M1 Taking logs and attempting implicit diffn.

Alt. Writing $y = e^{x \ln x}$ and diffg.

B1 No justification required

- (ii) $ln\{f(x)\} = x ln x$
 - $\frac{1}{f(x)} f'(x) = x \cdot \frac{1}{x} + 1 \cdot \ln x$ i.e. $f'(x) = (1 + \ln x) f(x)$

$$f'(x) = 0$$
 when $1 + \ln x = 0$, $\ln x = -1$, $x = e^{-1}$

3

- $\mathcal{L}im\left(\mathbf{f}(x)\right) = \mathcal{L}im\left(\mathbf{e}^{x \ln x}\right) = \mathcal{L}im\left(\mathbf{e}^{0}\right) = 1$ (iii)
- B1 Suitably justified

A1

A1

- $\mathcal{L}im\left(\mathbf{g}(x)\right) = \mathcal{L}im\left(x^{\mathbf{f}(x)}\right) = \mathcal{L}im\left(x^{\mathbf{1}}\right) = 0$
- **B1** May just be stated

Alt.
$$\underset{x\to 0}{\text{Lim}} (g(x)) = \underset{x\to 0}{\text{Lim}} (e^{f(x)\ln x}) = \underset{x\to 0}{\text{Lim}} (e^{\ln x}) = \underset{x\to 0}{\text{Lim}} (x) = 0$$

2

(iv) For $y = \frac{1}{x} + \ln x$ (x > 0),

$$\frac{dy}{dx} = -\frac{1}{x^2} + \frac{1}{x}$$
 or $\frac{x-1}{x^2} = 0$...

For
$$x = 1-$$
, $\frac{dy}{dx} < 0$ and for $x = 1+$, $\frac{dy}{dx} > 0$

(1, 1) is a MINIMUM of $y = \frac{1}{x} + \ln x$

M1 Diffg. and equating to zero

A1 From correct derivative

M1 Method for deciding

(Since there are no other TPs or discontinuities)

$$y \ge 1$$
 for all $x > 0$

Conclusion must be made for all 4 marks

ln(g(x)) = f(x) ln x

$$\frac{1}{g(x)} \cdot g'(x) = f(x) \cdot \frac{1}{x} + \ln x \{ f(x) (1 + \ln x) \}$$

$$\Rightarrow g'(x) = f(x).g(x) \left\{ \frac{1}{x} + \ln x + (\ln x)^2 \right\}$$

$$\geq f(x).g(x) \left\{ 1 + (\ln x)^2 \right\}$$

> 0 since f, g > 0 from (i)
and
$$1 + (\ln x)^2 \ge 1 > 0$$

M1 Taking logs and attempting implicit diffn.

A1 using f'(x) from (ii)

M1 using previous result of (iv)

A1 Given Answer fully justified

- **B1** One of f, g correct ...
- **B1** Both correct relative to y = x
- **B1** All three passing thro' (1, 1)

Line thro' A perpr. to BC is $\mathbf{r} = \mathbf{a} + \lambda \mathbf{u}$	B1
Line thro' <i>B</i> perpr. to <i>CA</i> is $\mathbf{r} = \mathbf{b} + \mu \mathbf{v}$	B1
Lines meet when $(\mathbf{r} = \mathbf{p} =) \mathbf{a} + \lambda \mathbf{u} = \mathbf{b} + \mu \mathbf{v}$	M1 Equated
$\Rightarrow \mathbf{v} = \frac{1}{\mu} (\mathbf{a} - \mathbf{b} + \lambda \mathbf{u})$	A1

,	
Since v is perpr. to CA , $(\mathbf{a} - \mathbf{b} + \lambda \mathbf{u}) \cdot (\mathbf{a} - \mathbf{c}) = 0$	M1
$\Rightarrow (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{c}) + \lambda \mathbf{u} \cdot (\mathbf{a} - \mathbf{c}) = 0$	A1 Correctly multiplied out
$\Rightarrow \lambda = \frac{(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{a} - \mathbf{c})}{\mathbf{u} \cdot (\mathbf{a} - \mathbf{c})}$	M1 Re-arranging for λ
	A1 Correct (any sensible form)
$\Rightarrow p = a + \left(\frac{(b-a) \cdot (a-c)}{u \cdot (a-c)}\right) u$	A1 FT their λ (if only \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{u} involved)

$\overrightarrow{CP} = \mathbf{p} - \mathbf{c} = \mathbf{a} - \mathbf{c} + \lambda \mathbf{u}$	B1 FT their λ
Attempt at $\overrightarrow{CP} \bullet \overrightarrow{AB}$	M1
$= (\mathbf{a} - \mathbf{c} + \lambda \mathbf{u}) \bullet (\mathbf{b} - \mathbf{a})$	A1 Correct to here
$= (\mathbf{a} - \mathbf{c}) \bullet (\mathbf{b} - \mathbf{a}) + \lambda \mathbf{u} \bullet (\mathbf{b} - \mathbf{a})$	
Now $\mathbf{u} \cdot (\mathbf{b} - \mathbf{c}) = 0$ since \mathbf{u} perpr. to BC	M1
$\Rightarrow \mathbf{u} \bullet \mathbf{b} = \mathbf{u} \bullet \mathbf{c}$	A1
so that $\overrightarrow{CP} \bullet \overrightarrow{AB} = (\mathbf{a} - \mathbf{c}) \bullet (\mathbf{b} - \mathbf{a}) + \lambda \mathbf{u} \bullet (\mathbf{c} - \mathbf{a})$	M1 Substituted in
$= (\mathbf{a} - \mathbf{c}) \bullet (\mathbf{a} - \mathbf{b} + \lambda \mathbf{u})$	M1 A1 Factorisation attempt; correct
= 0 from boxed line above	A1 E1 Statement; justified
$\Rightarrow CP$ is perpr. to AB	E1 For final, justified statement

Notice that the "value" of is never actually required

Any candidate who states the result is true because P is the *orthocentre* of $\triangle ABC$ may be awarded **B2** for actually knowing something about triangle-geometry, but only in addition to any of the first 3 marks earned in the above solution: i.e. a maximum of 5/11 for the second part of the question.

However, we already have that	E1	Properly justified
$2k\sin\theta \le k(1+\cos\theta) \le (k+2)(1+\cos\theta)$		
so there are no extra restrictions on θ .		
	Subtotal:	
	10	
(iii)		
$4\sin^2\theta \le 1 + 2\cos\theta + \cos^2\theta$	M1	Squaring up an appropriate trig inequality
$4(1-\cos^2\theta) \le 1 + 2\cos\theta + \cos^2\theta$		ang megaanty
$0 \le 5\cos^2\theta + 2\cos\theta - 3$	M1	Creating and simplifying
$0 \le (5\cos\theta - 3)(\cos\theta + 1)$		quadratic inequality in one trig
Since $\cos \theta \ge 0$ we have $\cos \theta \ge \frac{3}{5}$	A1	1 3 6 7 9
3	E1	A graphical argument is
For appropriate angles $\cos \theta$ is decreasing and $\sin \theta$ is increasing.	EI	A graphical argument is perfectly acceptable here.
increasing.		N.b It is possible that
		inequalities like $2s - 1 \le c$
		are squared. If this is done
		without justifying that both
		sides are positive then
		withhold this final E1 .
Therefore $\sin \theta \leq \frac{4}{\epsilon}$	AG	
r-a	B1	
$\sin\theta = \frac{r - a}{r}$		
So $5r - 5a \le 4r$	M1	Combining with previous
		result
$r \le 5a$	AG	
	Subtotal:	
	6	

$ma = F - (Av^{2} + R)$ $WD = \int_{0}^{d} F dx$ $= \int_{0}^{d} (ma + Av^{2} + R) dx$ $Since a = v \frac{dv}{dx} WD = \int_{x=0}^{x=d} (ma + Av^{2} + R) \frac{dx}{dv} dv M1 Attempting to change variable integration.$	of
$WD = \int_{0}^{R} F dx$ $= \int_{0}^{d} (ma + Av^{2} + R) dx$ Since $a = v \frac{dv}{dx}$ B1	of
$= \int_{0}^{d} (ma + Av^{2} + R) dx$ Since $a = v \frac{dv}{dx}$ B1	of
$= \int_{0}^{d} (ma + Av^{2} + R) dx$ Since $a = v \frac{dv}{dx}$ B1	of
Since $a = v \frac{dv}{dx}$	of
Since $a = v \frac{dv}{dx}$	of
Since $a = v \frac{dv}{dx}$	of
Since $a = v \frac{dv}{dx}$	of
	of
	of
$WD = \int_{x=0}^{x=a} (ma + Av^2 + R) \frac{dx}{dv} dv$ Attempting to change variable integration.	OI
$\int_{x=0}^{\infty} \frac{(ma + Av + K)}{dv} dv$ Integration.	
x = 0	
$= \int_{x=0}^{x=d} (ma + Av^2 + R) \frac{v}{a} dv$	
$=\int (ma + Av + K) - dv$	
x=0	
	_
Using $v^2 = u^2 + 2as$ with $v = w$, $u = 0$, $s = d \Rightarrow$ Justifying limits. Ignore absence	e of
$w = \sqrt{2ad}$	
Therefore: AG	
$WD = \int_{-\infty}^{v=w} \frac{(ma + Av^2 + R)v}{a} dv$	
$\int_{v=0}^{\infty} a$	
[5]	
(i)	
BM1 Developming integration	
$WD = \left[\left(m + \frac{R}{a} \right) \frac{v^2}{2} + \frac{Av^4}{4a} \right]^{\sqrt{2}ad}$	
$ WD = \left \left \frac{m+-}{a} \right \frac{1}{2} + \frac{1}{4a} \right $	
(R) Correct answer in terms of d.	
$= \left(m + \frac{R}{a}\right)ad + Aad^2$ A1 Correct answer in terms of d.	
(")	
For second half-journey, B1B1 B1 for correct limits	
$WD = \int_{-a}^{0} \frac{(-ma + Av^2 + R)v}{-a} dv$ B1 for correct integrand	
$WD = \int \frac{dv}{dv} dv$	
$\frac{-u}{w}$	
$= - mad + Rd + Aad^2$	
Summing gives $2dR + 2Aad^2$ AG N.b. integrals may be combined	d to
get to the same result.	
$R > ma \implies F = Av^2 + R - ma > 0$ always	
[6]	

(ii)		
If $R < ma$ then F is zero when $Av^2 = ma - R$	B1	Finding an expression for the
$\sqrt{ma-R}$		critical speed.
i.e. when $v = V = \sqrt{\frac{ma - R}{A}}$		
For F to fall to zero during motion, $V < w$	E1	
ma-R	E1	
i.e. when $\frac{ma-R}{A} < 2ad$ i.e. $R > ma-2Aad$		
In this case, $WD = mad + Rd + Aad^2$,	B1	
as before, for the first half-journey		
$\int_{\mathbf{c}}^{V} \left(-ma + Av^2 + R\right)v$	M2	
For the second half $WD = \int_{-a}^{b} \frac{(-ma + Av^2 + R)v}{-a} dv$		
w - u		
$\int_{V} \int_{V} \left[\int_{V} \left(\int_{V$	A1	
$\left \left (ma - R) \frac{v^2}{2a} - \frac{Av^4}{4a} \right _{\dots}^{\nu}$		
$=\frac{1}{2a}(ma-R)\left(\frac{ma-R}{A}\right)-\frac{A}{4a}\left(\frac{ma-R}{A}\right)^{2}$	M1	Substituting expressions for V and w.
$2a^{(ma-1)}$ A) $4a$ A)		w.
$\frac{1}{2a}(ma-R)(2ad) + \frac{A}{4a}(4a^2d^2)$		
$\frac{1}{2a}$ $\frac{1}{4a}$ $\frac{1}{4a}$ $\frac{1}{4a}$		
$\begin{bmatrix} 1 & (ma & p)^2 & 1 & (ma & p)^2 & (ma & p)^4 \end{bmatrix}$		
$= \frac{1}{2Aa}(ma-R)^2 - \frac{1}{4Aa}(ma-R)^2 - (ma-R)d +$		
Aad^2		
$\frac{1}{1} (ma \cdot D)^2 = mad + Dd + 4\pi d^2$	A1 CAO	Without wrong working
$= \frac{1}{4Aa}(ma - R)^2 - mad + Rd + Aad^2$		
1 (1)	AG	
So total WD = $\frac{1}{4 A a} (ma - R)^2 + 2Rd + 2Aad^2$		
1710	[9]	

(i) $At \ A, KE = \frac{1}{2}mu^2 = \frac{5}{2}mag, PE = 0$ $At \ A_1, K = \frac{1}{2}mv^2, PE = 2mag$ $Conservation of energy: $			
At A , $KE = \frac{1}{2}mu^2 = \frac{5}{2}mag$, $PE = 0$ At A_1 , $K = \frac{1}{2}mv^2$, $PE = 2mag$ Conservation of energy: $\frac{5}{2}mag = \frac{1}{2}mv^2 + 2mag$ M1 $\frac{v^2 = ga}{v = \sqrt{ga}}$ A1 If angle at A_1 is β and it just passes the second wall then we have: $0 = v \sin \theta \ t - \frac{1}{2}gt^2$ M1 Using $s = ut + \frac{1}{2}at^2$ So $t = \frac{2v}{g}\sin \beta$ A1 A1 A1 Solving for t at second wall. A1so, $a = v \cos \beta \ t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g}$ A1 Considering horizontal distance N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta$ A1 Combining previous results. So $\sin(2\beta) = 1$ A1 Therefore $\beta = 45^\circ$ AG Condone absence of domain considerations. $x \text{ velocity is constant so}$ M1 Comparing $x \text{ velocities}$ A1 Comparing $x \text{ velocities}$	Y Za		
At A_1 , $K = \frac{1}{2}mv^2$, $PE = 2mag$ Conservation of energy: $\frac{5}{2}mag = \frac{1}{2}mv^2 + 2mag$ M1 $v^2 = ga$ $v = \sqrt{ga}$ A1 If angle at A_1 is β and it just passes the second wall then we have: $0 = v \sin \theta \ t - \frac{1}{2}gt^2$ M1 Using $s = ut + \frac{1}{2}at^2$ So $t = \frac{2v}{g}\sin \beta$ A1 A1 Solving for t at second wall. Also, $a = v \cos \beta \ t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta$ A1 Combining previous results. So $\sin(2\beta) = 1$ A1 Therefore $\beta = 45^\circ$ AG Condone absence of domain considerations. Is $y = y = y = y = y = y = y = y = y = y $		D4	
Conservation of energy: $\frac{5}{2}mag = \frac{1}{2}mv^2 + 2mag$ $v^2 = ga$ $v = \sqrt{ga}$ A1 If angle at A_1 is β and it just passes the second wall then we have: $0 = v \sin \theta \ t - \frac{1}{2}gt^2$ M1 Using $s = ut + \frac{1}{2}at^2$ So $t = \frac{2v}{g} \sin \beta$ A1 A1 Solving for t at second wall. Also, $a = v \cos \beta \ t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g}$ A1 Combining previous results. So $\sin(2\beta) = 1$ Therefore $\beta = 45^\circ$ A2 A3 Combining previous results. A4 Condone absence of domain considerations. [5] x velocity is constant so $u \cos \alpha = v \cos \beta$ M1 Comparing x velocities M1 Comparing x velocities		B1	
$\frac{5}{2}mag = \frac{1}{2}mv^2 + 2mag$ $v^2 = ga$ $v = \sqrt{ga}$ A1 If angle at A_1 is β and it just passes the second wall then we have: $0 = v \sin \theta \ t - \frac{1}{2}gt^2$ M1 Using $s = ut + \frac{1}{2}at^2$ So $t = \frac{2v}{g}\sin \beta$ A1 Solving for t at second wall. Also, $a = v \cos \beta t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta$ A1 Combining previous results. So $\sin(2\beta) = 1$ Therefore $\beta = 45^\circ$ AG Condone absence of domain considerations. $x \text{ velocity is constant so}$ $y \cos \alpha = v \cos \beta$ M1 Comparing $x \text{ velocities}$ A1 Comparing $x \text{ velocities}$	$At A_1, K = \frac{1}{2}mv^2, PE = 2mag$	B1	
If angle at A_1 is β and it just passes the second wall then we have: $0 = v \sin \theta t - \frac{1}{2}gt^2 \qquad \qquad \mathbf{M1} \qquad \text{Using } s = ut + \frac{1}{2}at^2$ So $t = \frac{2v}{g} \sin \beta$ A1 Solving for t at second wall. Also, $a = v \cos \beta t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g} \qquad \qquad \mathbf{M1} \qquad \text{Considering horizontal distance}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta \qquad \qquad \mathbf{A1} \qquad \text{Combining previous results.}$ So $\sin(2\beta) = 1$ A1 Combining previous results.		M1	
If angle at A_1 is β and it just passes the second wall then we have: $0 = v \sin \theta t - \frac{1}{2}gt^2 \qquad \qquad \mathbf{M1} \qquad \text{Using } s = ut + \frac{1}{2}at^2$ So $t = \frac{2v}{g} \sin \beta$ A1 Solving for t at second wall. Also, $a = v \cos \beta t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g} \qquad \qquad \mathbf{M1} \qquad \text{Considering horizontal distance}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta \qquad \qquad \mathbf{A1} \qquad \text{Combining previous results.}$ So $\sin(2\beta) = 1$ A1 Combining previous results.	$v^2 = ga$		
If angle at A_1 is β and it just passes the second wall then we have: $0 = v \sin \theta t - \frac{1}{2}gt^2 \qquad \qquad \mathbf{M1} \qquad \text{Using } s = ut + \frac{1}{2}at^2$ So $t = \frac{2v}{g} \sin \beta$ A1 Solving for t at second wall. Also, $a = v \cos \beta t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g} \qquad \qquad \mathbf{M1} \qquad \text{Considering horizontal distance}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta \qquad \qquad \mathbf{A1} \qquad \text{Combining previous results.}$ So $\sin(2\beta) = 1$ A1 Combining previous results.	$v = \sqrt{ga}$	A1	
have: $0 = v \sin \theta \ t - \frac{1}{2} g t^2$ $So \ t = \frac{2v}{g} \sin \beta$ A1 Solving for t at second wall. Also, $a = v \cos \beta \ t$ $M1 Considering horizontal distance$ $= \frac{2v^2 \sin \beta \cos \beta}{g}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta$ A1 Combining previous results. So $\sin(2\beta) = 1$ Therefore $\beta = 45^\circ$ AG Condone absence of domain considerations. $x \text{ velocity is constant so}$ $y \cos \alpha = v \cos \beta$ M1 Comparing $x \text{ velocities}$ $\sqrt{5ag} \cos \alpha = \sqrt{ag} \frac{1}{\sqrt{5ag}}$ A1	, and the second	[4]	
So $t = \frac{2v}{g} \sin \beta$ A1 Solving for t at second wall. Also, $a = v \cos \beta t$ M1 Considering horizontal distance $= \frac{2v^2 \sin \beta \cos \beta}{g}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $= 2a \sin \beta \cos \beta$ A1 Combining previous results. So $\sin(2\beta) = 1$ A1 Therefore $\beta = 45^\circ$ AG Condone absence of domain considerations. [5] x velocity is constant so $u \cos \alpha = v \cos \beta$ M1 Comparing x velocities $\sqrt{5ag} \cos \alpha = \sqrt{ag} \frac{1}{\sqrt{5}}$			
Also, $a=v\cos\beta t$ $=\frac{2v^2\sin\beta\cos\beta}{g}$ $=\frac{2v^2\sin\beta\cos\beta}{g}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $=2a\sin\beta\cos\beta$ A1 Combining previous results. So $\sin(2\beta)=1$ Therefore $\beta=45^\circ$ AG Condone absence of domain considerations. [5] x velocity is constant so $u\cos\alpha=v\cos\beta$ M1 Comparing x velocities $\sqrt{5ag}\cos\alpha=\sqrt{ag}\frac{1}{\sqrt{5}}$ A1	$0 = v \sin \theta t - \frac{1}{2} g t^2$	M1	Using $s = ut + \frac{1}{2}at^2$
$=\frac{2v^2\sin\beta\cos\beta}{g}$ $=\frac{2v^2\sin\beta\cos\beta}{g}$ N.b. Some candidates may just quote this (or equivalent). Give full credit. $=2a\sin\beta\cos\beta$ A1 Combining previous results. $So\sin(2\beta)=1$ Therefore $\beta=45^\circ$ AG Condone absence of domain considerations. $[5]$ $x \text{ velocity is constant so}$ $u\cos\alpha=v\cos\beta$ $\sqrt{5ag}\cos\alpha=\sqrt{ag}\frac{1}{\sqrt{5}}$ A1 Comparing x velocities	So $t = \frac{2v}{g} \sin \beta$	A1	
$= 2a \sin \beta \cos \beta \qquad \qquad \text{A1} \qquad \text{Combining previous} \\ \text{So } \sin(2\beta) = 1 \qquad \qquad \text{A1} \qquad \\ \text{Therefore } \beta = 45^\circ \qquad \qquad \text{AG} \qquad \text{Condone absence of domain considerations.} \\ x \text{ velocity is constant so} \qquad \qquad \text{M1} \qquad \text{Comparing } x \text{ velocities} \\ \sqrt{5ag} \cos \alpha = \sqrt{ag} \frac{1}{\sqrt{2}} \qquad \qquad \text{A1} \qquad \qquad \text{A1}$	Also, $a = v \cos \beta t$	M1	_
$= 2a \sin \beta \cos \beta \hspace{1cm} \textbf{A1} \hspace{1cm} \textbf{Combining previous} \\ \textbf{results.} \\ \textbf{So } \sin(2\beta) = 1 \hspace{1cm} \textbf{A1} \hspace{1cm} \\ \textbf{Therefore } \beta = 45^{\circ} \hspace{1cm} \textbf{AG} \hspace{1cm} \textbf{Condone absence of} \\ \textbf{domain considerations.} \\ \textbf{[5]} \\ x \hspace{1cm} \textbf{velocity is constant so} \hspace{1cm} \textbf{M1} \hspace{1cm} \textbf{Comparing } x \hspace{1cm} \textbf{velocities} \\ \hline \sqrt{5ag} \cos \alpha = \sqrt{ag} \hspace{1cm} \frac{1}{\sqrt{2}} \hspace{1cm} \textbf{A1} \hspace{1cm} \\ \textbf{A1} \end{array}$	$=\frac{2v^2\sin\beta\cos\beta}{g}$		may just quote this (or equivalent). Give full
Therefore $\beta=45^\circ$ AG Condone absence of domain considerations. [5] x velocity is constant so $u\cos\alpha=v\cos\beta \qquad \qquad \text{M1} \qquad \text{Comparing } x \text{ velocities}$ $\sqrt{5ag}\cos\alpha=\sqrt{ag}\frac{1}{\sqrt{2}}$	$= 2a\sin\beta\cos\beta$	A1	
	So $\sin(2\beta) = 1$	A1	
x velocity is constant so $u\cos\alpha = v\cos\beta \qquad \qquad \text{M1} \qquad \text{Comparing } x \text{ velocities}$ $\sqrt{5ag}\cos\alpha = \sqrt{ag}\frac{1}{\sqrt{2}} \qquad \qquad \text{A1}$	Therefore $\beta=45^\circ$	AG	
$u\cos\alpha = v\cos\beta \qquad \qquad \textbf{M1} \qquad \text{Comparing x velocities}$ $\sqrt{5ag}\cos\alpha = \sqrt{ag}\frac{1}{\sqrt{2}} \qquad \qquad \textbf{A1}$		[5]	
$u\cos\alpha = v\cos\beta$ $\sqrt{5ag}\cos\alpha = \sqrt{ag}\frac{1}{\sqrt{2}}$ $\cos\alpha = \frac{1}{\sqrt{10}}$ A1 $\sin\alpha = \frac{3}{\sqrt{10}}\tan\alpha = 3$ M1 Comparing x velocities A1	·		
$\sqrt{5ag}\cos\alpha = \sqrt{ag}\frac{1}{\sqrt{2}}$ $\cos\alpha = \frac{1}{\sqrt{10}}$ $\sin\alpha = \frac{3}{\sqrt{10}} \text{A1}$ Converting to a more	$u\cos\alpha = v\cos\beta$	M1	Comparing x velocities
$\sin \alpha = \frac{3}{\tan \alpha} \tan \alpha = 3$ A1 Converting to a more	$\sqrt{5ag}\cos\alpha = \sqrt{ag}\frac{1}{\sqrt{2}}$ $\cos\alpha = \frac{1}{\sqrt{10}}$	A1	
$\sqrt{10}$, and $u = 3$ useful ratio.	$\sin \alpha = \frac{3}{\sqrt{10}}, \tan \alpha = 3$	A1	Converting to a more useful ratio.

Mathad 1.	D.4.1	1 2
Method 1:	M1	Using $s = ut + \frac{1}{2}at^2$
$2a = \sqrt{5ag} \frac{3}{\sqrt{10}} t - \frac{1}{2} g t^2$		
$=\frac{3\sqrt{ag}}{\sqrt{2}}t-\frac{1}{2}gt^2$		
VZ Z		
So S		
$t^2 - \frac{3\sqrt{2a}}{2a}t + \frac{4a}{2a} = 0$		
$t^{2} - \frac{3\sqrt{2a}}{\sqrt{g}}t + \frac{4a}{g} = 0$ $\left(t - \sqrt{\frac{2a}{g}}\right)\left(t - 2\sqrt{\frac{2a}{g}}\right) = 0$		
$\left(\begin{array}{c} \overline{2a} \\ \end{array}\right)$		
$\left(t-\left \frac{2\alpha}{2}\right \right)\left(t-2\left \frac{2\alpha}{2}\right \right)=0$		
$\langle \sqrt{g} \rangle \langle \sqrt{g} \rangle$		
First time and the wall many that the Za	A1	
First time over the wall means that $t = \sqrt{\frac{2a}{g}}$		
Cod	A1	
So $d = u\cos\theta \ t = \sqrt{5ag} \times \frac{1}{\sqrt{10}} \times \sqrt{\frac{2a}{g}} = a$		
Method 2:	M1	Using trajectory
$gx^2 \sec^2 \alpha$		equation
$y = x \tan \alpha - \frac{gx^2 \sec^2 \alpha}{2u^2}$ $2a = 3x - \frac{x^2}{a}$ $(x - a)(x - 2a) = 0$		
χ^2	A1	Combining with
$2a = 3x - \frac{a}{a}$		previous results
(x-a)(x-2a) = 0		·
x = a	A1	
	[6]	
If the speed at h above first wall is v then by conserving	M1	
energy,		
$\frac{1}{2}5ag = \frac{1}{2}v^2 + (2a+h)g$		
$\frac{2}{2}\sin y = \frac{1}{2}v + (2u + n)y$		
2		
$v^2 = ag - 2gh$	B1	
Heing traingtony agustion with prigin at tan of first wall and	D/1	Use of traingtony
Using trajectory equation with origin at top of first wall and angle β as particle moves over first wall:	M1	Use of trajectory
angle p as particle moves over first wall. $ar^2(1 \pm tan^2 R)$		equation (might be several kinematics
$y = h + x \tan \beta - \frac{gx^2(1 + \tan^2 \beta)}{2v^2}$		equations effectively
When $x = a$ we need $y = 0$:		leading to the same
		thing)
$0 = h + a \tan \beta - \frac{ga^2(1 + \tan^2 \beta)}{2v^2}$		01
20	0.04	Canadalastee Hee
Treating this as a quadratic in $\tan \beta$:	M1	Considering the
$-\frac{ga^2}{2m^2}\tan^2\beta + a\tan\beta + h - \frac{ga^2}{2m^2} = 0$		quadratic (or
		equivalently differentiating to find
$-gu^{-1} \tan^{2} p + 2uv^{-1} \tan p + 2uv^{-1} - gu^{-1} = 0$ The discriminant is:		the max)
$4a^2v^4 + 4ga^2(2hv^2 - ga^2)$		the max)
iu v i igu (Liiv gu)		
$= 4a^{2}(g^{2}(a^{2} - 4ah + 4h^{2}) + 2g^{2}h(a - 2h) - g^{2}a^{2}))$	A1	Obtaining a clearly
$= 4a^{2}g^{2}(a^{2} - 4ah + 4h^{2} + 2ah - 4h^{2} - a^{2})$		negative discriminant –
$= -8a^3g^2h$		this might take many
< 0		alternative forms.
Therefore no solution.		
	[5]	

(i)	B2	-
n n	D2	
$P(X + Y = n) = \sum_{r=0}^{n} P(X = r)(P(Y = n - r))$		
r=0		
$\frac{n}{n}$ $-\lambda_2 r$ $-\mu$ $n-r$	B1	
$=\sum_{r=0}^{n}\frac{e^{-\lambda}\lambda^{r}}{r!}\times\frac{e^{-\mu}\mu^{n-r}}{(n-r)!}$	D1	
$\underset{r=0}{\angle}$ r! $(n-r)!$		
$a^{-\lambda}a^{-\mu}$	M1	Attempting to manipulate
$=\frac{e^{-\lambda}e^{-\mu}}{n!}\sum_{r=0}^{n}\frac{n!}{r!(n-r)!}\lambda^{r}\mu^{n-r}$		factorials towards a binomial
$n! \underset{r=0}{{\angle}} r! (n-r)!$		coefficient
$\rho^{-\lambda}\rho^{-\mu}\sum_{n=0}^{n} (n)$	B1	Identifying correct binomial
$=\frac{e^{-\lambda}e^{-\mu}}{n!}\sum_{r=0}^{n}\binom{n}{r}\lambda^{r}\mu^{n-r}$		coefficient
n: Z= (1)		
$\rho^{-(\lambda+\mu)}$	B1	
$=\frac{e^{-(\lambda+\mu)}}{n!}(\lambda+\mu)^n$		
16.		
Which is the the formula for $Po(\lambda + \mu)$	E1	Recognising result. Must state
	[-1	parameters
(::)	[7]	
(ii) $P(X=r) \times P(Y=k-r)$	M2	(may be implied by following
$P(X = r X + Y = k) = \frac{P(X = r) \times P(Y = k)}{P(Y + Y = k)}$	IVIZ	line)
$P(X = r X + Y = k) = \frac{P(X = r) \times P(Y = k - r)}{P(X + Y = k)}$ $= \frac{\frac{e^{-\lambda} \lambda^r}{r!} \times \frac{e^{-\mu} \mu^{k-r}}{(k-r)!}}{\frac{e^{-(\lambda+\mu)}}{k!} (\lambda + \mu)^k}$	A1	inie,
$\frac{e^{-\lambda}}{r!} \times \frac{e^{-\lambda}\mu}{(k-r)!}$	71	
$=\frac{1}{a^{-(\lambda+\mu)}}$		
$\frac{e^{-k}}{k!}(\lambda+\mu)^k$		
	A1	
$=\frac{k!}{r! (k-r)!} \left(\frac{\lambda}{\lambda+\mu}\right)^r \left(\frac{\mu}{\lambda+\mu}\right)^{k-r}$ Which is a $B\left(k,\frac{\lambda}{\lambda+\mu}\right)$ distribution.	AI	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E1	Darameters must be stated
Which is a $B\left(k, \frac{\kappa}{\lambda + \mu}\right)$ distribution.	ET	Parameters must be stated.
	[5]	
(iii) This corresponds to r=1, k=1 from (ii)	M2	Can be implied by correct
		answer.
So probability is $\frac{\lambda}{\lambda + \mu}$.	A1	
(iv)	[3]	
Expected waiting time given that Adam is first is waiting time	B2	Also accept waiting time given
for first fish plus waiting time for Eve $\left(=\frac{1}{\lambda+\mu}+\frac{1}{\mu}\right)$		Eve is first. Must be clearly
101 max man plus watering time for Eve $\left(-\frac{1}{\lambda+\mu} + \frac{1}{\mu}\right)$		identified.
Expected waiting time is:	M2	
E(Waiting time Adam first)P(Adam first)+E(Waiting time Eve		
first)P(Eve first)		
$= \left(\frac{1}{\lambda + \mu} + \frac{1}{\mu}\right) \times \frac{\lambda}{\lambda + \mu} + \left(\frac{1}{\lambda + \mu} + \frac{1}{\lambda}\right) \times \frac{\mu}{\lambda + \mu}$	A1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		No need for this algebraic
$=\frac{1}{\lambda}+\frac{1}{\mu}-\frac{1}{\lambda+\mu}$		simplification.
η μ πιμ	[5]	
	[-]	

(;)	1	1
(i)	N/1 A 1	NA1 for any attempt relating to
$P(\text{correct key on } k^{\text{th}} \text{attempt}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{k-1}$	M1A1	M1 for any attempt relating to
n = n		the geometric distribution –
		e.g. missing first factor or
		power slightly wrong.
$=pq^{k-1}$		Although not strictly necessary,
Where $p = \frac{1}{n}$, $q = 1 - \frac{1}{n}$		you may see this substitution
n n n		frequently
Expected number of attempts is given by	M1	May be written in sigma
$p + 2pq + 3pq^2 \dots$		notation
$p + 2pq + 3pq^{2} \dots$ $= p(1 + 2q + 3q^{2} \dots)$ $= p(1 - q)^{-2}$ $= \frac{p}{p^{2}} = \frac{1}{p}$		
$= p(1-q)^{-2}$	M1	Linking to binomial expansion
p 1		
$=\frac{1}{n^2}=\frac{1}{n}$		
= n	A1	
·	[5]	
(ii)	r~1	
	B1	
$P(\text{correct key on } k^{\text{th}} \text{attempt}) = \frac{1}{n} \text{ for } k = 1n$	01	
Expected number of attempts is given by	M1	
$\frac{1}{n} + \frac{2}{n} + \frac{3}{n} \dots + \frac{n}{n}$		
$n \vdash n \vdash n \cdots \vdash n$		
$=\frac{n+1}{2}$	M1A1	M1 for clearly recognising sum
2		of integers / arithmetic series.
	[4]	
(iii)		
$P(\text{correct key on } k^{\text{th}} \text{attempt})$	M1	M1 for an attempt at this,
$= \frac{n-1}{n} \times \frac{n}{n+1} \times \frac{n+1}{n+2} \dots \times \frac{1}{n+k-1}$	A1	possibly by pattern spotting the
$=\frac{1}{n} \times \frac{1}{n+1} \times \frac{1}{n+2} \times \frac{1}{n+k-1}$		first few cases. Condone
		absence of checking $k=1$ case
		explicitly.
$= \frac{n-1}{(n+k-2)(n+k-1)}$	M1	M1 for attempting telescoping
$-\frac{1}{(n+k-2)(n+k-1)}$	AG	(may be written as an
		induction)
(-1) $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	M2	Attempting partial fractions
$= (n-1)\left(\frac{-1}{n+k-1} + \frac{1}{n+k-2}\right)$	A1	(This may be seen later)
	[6]	
Expected number of attempts is given by	M1	
$(n-1)\sum_{1}^{\infty}\left(\frac{k}{n+k-2}-\frac{k}{n+k-1}\right)$		
$= (n-1)\left[\left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{2}{n} - \frac{2}{n+1}\right)\right]$		
$-(n-1)[(n-1-\frac{n}{n})+(\frac{n}{n}-\frac{n+1}{n+1})]$		
$+\left(\frac{3}{n+1}-\frac{3}{n+2}\right)$		
$\lceil (n+1 n+2)^m \rceil$		
$= (n-1) \left[\frac{1}{n-1} + \frac{1}{n} + \frac{1}{n+1} \dots \right]$ $= (n-1) \left(\sum_{n=1}^{\infty} \frac{1}{r} - \sum_{n=1}^{n-2} \frac{1}{r} \right)$	M1A1	M1 for attempting telescoping
$\lfloor \frac{1}{n} - \frac{1}{n} \frac{n+1}{n+1} \rfloor$		
$\left(\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} 1\right)\right)$	B1	
$=(n-1)\left(\sum_{r}-\sum_{r}\right)$		
$\sqrt{r=1}$ $r=1$		
In the brackets there is an infinite sum minus a finite sum, so	E1	
the result is infinite.		
		•
	[5]	